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TECHNICAL MEMORANDUM

A STRATEGY FOR INTEGRATING A LARGE FINITE ELEMENT MODEL

USING MSC NASTRAN/PATRAN: X-33 LESSONS LEARNED

1. INTRODUCTION

The responsibility for large structures rarely rests in the hands of a single institution any longer.

The responsibility is now being spread across a larger number of industry partners. So too is the respon-

sibility for the structural finite element models used for assessing these structures. This broad effort

often needs to be refocused into an integrated model that reflects characteristics of the full system.
This is the task of the model integrator.

Attempts have been made in the past to provide tools to the model integrator to simplify this

task. ALAS l is an example of a tool that attempted to simplify some of the analytical aspects of the

integration task. Many of today's computer-aided engineering (CAE) packages have various tools and

degrees of success supporting this process. MSC/SuperModel is one of the latest tools to put forth a

system for simplifying this process. 2,3 It itself is based on tools developed in-house at the old

McDonnell-Douglas Aircraft Corporation similar to in-house tools developed at many companies.

Even with these current and developing tools most of the modelers involved in the project likely use

different CAE packages. This offers its own challenges to the integrator.

For the past 3 years the Structural Dynamics and Loads Branch of NASA's Marshall Space

Flight Center (MSFC) has had the task of integrating the X-33 vehicle structural finite element model.

In that time, five versions of the integrated vehicle model have been produced. A great number of

lessons were learned in this process. Presented here is a strategy that, if used at the outset of the project,

will pave the way for a smooth integration. This strategy would benefit anyone given the task of inte-

grating structural finite element models that have been generated by various modelers and companies.

This strategy also provides benefits regardless of the tools used to help the integrator in this task.



2. THE X-33 MODEL INTEGRATION PROBLEM

The X-33 vehicle is an advanced technology demonstrator sponsored by NASA. The X-33

program will demonstrate, in flight, the new technologies needed for a reusable launch vehicle using a

half-scale prototype. NASA has selected Lockheed-Martin Skunkworks to design, build, and fly the

X-33 test vehicle. The industry team, with Lockheed-Martin Skunkworks as lead, includes Lockheed-

Martin Michoud, B.E Goodrich (previously Rohr), Boeing Rocketdyne, and NASA.

The X-33 has a complicated and highly coupled structural design (see fig. I). It consists of a

liquid oxygen (lox) tank sitting on top of a pair of side-by-side liquid hydrogen (LH 2) tanks. Behind

and in-between the hydrogen tanks are the two aerospike engines. Over all of this is a complex

aeroshell structure that provides thermal protection and the aerodynamic shape of the lifting body. The

canted and vertical fins and body flaps are also attached to the thrust structure.

In order to assess the design, an integrated vehicle finite element model was required to deter-

mine internal loads. These internal loads were derived from externally applied forces in both static and

transient dynamic loads analyses. The required model was generated from individual major structure

models obtained from across the industry team. Models of the LH 2 tanks, thrust structure, intertank,

and landing gears were provided by Lockheed-Martin Skunkworks. The lox tank model was provided

by Lockheed-Martin Michoud. The aerospike engine model was provided by Boeing Rocketdyne. B.F.

Goodrich provided models of the canted fin control surfaces. The Structural Dynamics and Loads

Branch of NASA's MSFC had the task of modeling the aeroshell, body flap control surfaces, canted

and vertical fins, and the rotating launch mount. The Structural Dynamics and Loads Branch also had

the task of integrating the various models into the full vehicle model.

The integrated vehicle model that resulted has had five versions. Four complete loads analysis

cycles have been completed. These include static prelaunch, ascent, descent, landing, and transient

liftoff analyses. A fifth loads cycle is underway. The models have also been used to assess dynamic

characteristics for flight control analyses. The model grid count peaked at 29,427 grids for load cycle 4

and is now down to 20,400 grids for load cycle 5 after a concerted effort to reduce the model size.
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Figure 1. Cut-away view of X-33 structural finite element model.



3. STRATEGY FOR MODEL INTEGRATION
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The strategy presented here consists of six decisions that need to be made at the outset of the

project. These decisions, once made and agreed to by the modeling team, will pave the way for a smooth

model integration. These six decisions are: purpose of model, units, common material list, model num-

bering, interface control, and archive format. Each is discussed in detail below.

3.1 Purpose of Model

The first decision to be made is the purpose of the model. Is it a stress model? Is it a loads

model? A dynamics model? This decision drives many of the following decisions. In particular, it

defines the scope of the model and therefore the approach to the modeling. It would also have a direct

impact on the size of the model. The effort for X-33 was to develop a model that would be used to

recover internal element forces for use by stress analysts. It was never intended to recover stresses, as

this would have led to a model that would be all but impossible to run. It was also meant to adequately

represent elastic modes from 0 to --25 Hz so that liftoff transient loads could be recovered. These

dynamic characteristics were also to be used for control stability studies and POGO analyses. During

the entire development of the model it was a continua/challenge to balance the need for accurate forces

(not stresses) and dynamics and still have a reasonably sized model. Accommodations also had to be

made, both in increased and decreased fidelity, when it was decided the model would also be used for

flutter analyses.

It should be noted here that on the X-33 project two model "styles" existed. One style of model-

ing consisted of modeling the structure the way it was intended to work; i.e., modeling web caps with

rod elements because they were primarily intended to carry axial load. The other style modeled the

structure the way it was drawn or built in order to verify the assumptions used in design. For example,

the web caps were modeled with bar elements to verify that the axial load was the only significant load.

Every modeler uses a combination of these styles. The reasons include preference, economy, time, and

maturity of design. There is little expectation that the modeling can be controlled to the point of requir-

ing a consistent style. However, the model integrator needs to be aware of these styles so that any issues

that come up because of them can be quickly recognized and settled.

3.2 Units

The units of measure the model will use need to be decided. This could be of great importance if

the model is a joint venture between European and U.S. modelers. Even if the standard units used by the

modelers are similar, care should be taken, especially with mass versus weight units. While in the U.S.

most aircraft modelers commonly using inches, density poses a problem. Many modelers use weight

density but also, many modelers use mass density. The desired units for the integrated model should be

decided very early so the individual modelers can accommodate this. This was not done on the X-33, so

a number of models had to have their densities converted. Fortunately, all models were in inches.
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3.3 Common Materials List

The next thing to determine is material properties. It would be very advantageous to establish a

common materials list for use by all the modelers. The advantage would be a consistent set of properties

between modelers and therefore no redundancy in material definitions. Even though the materials might

be standard, there are many variations in alloys and thermal characteristics. This list would obviously

grow and change as the design evolves, but it should be a simple matter to provide regular updates. Even

if a particular model needed some specialized properties, it would start with a common base.

In conjunction with the common materials list, the ambient temperature of each model should be

defined. This could have a large effect on the material properties used for that model. For example,

composite material properties are much more dependent on temperature than metals, but even aluminum

has significant changes at cryogenic temperatures, such as the lox tank for the X-33. Also thermal

protection materials drastically change properties over their expected temperature ranges. Several

different material definitions may be necessary for the same material because of its use in different

areas. For example, a composite material may be used in a cryogenic LH 2 tank and also a hot thermal

protection support beam and therefore have two different material definitions. A common reference

temperature and units for coefficients of thermal expansion should also be established to facilitate a

thermal contraction or expansion assessment.

The use of a common materials list would also allow for easier changing of material properties

for assessment of different temperature profiles of the integrated model. For example, the ascent tem-

perature profile of the X-33, and therefore its material properties, may be drastically different from the

descent profile. You may therefore have a different common materials list for each temperature profile

with the same material identification. These lists could then be exchanged to assess the model for the

different profiles.

Invariably, somewhere, the model will use a "stiff" bar or plate where an RBAR won't do or use

stiff springs to recover interface loads in the global coordinate system. It would be good to define these

materials and properties in the common materials list also, so all the modelers could be consistent and

reduce redundant definitions.

The value of the MSC/NASTRAN parameter K6ROT for drilling stiffness in shell elements

should be decided early. Some modelers depend on a large value of K6ROT to alleviate drilling stiffiless

problems. Others depend on zero or low values of K6ROT to allow some freedom in this direction. Even

if you can specify different K6ROT parameters for different NASTRAN superelements, it is a good idea

to specify a default value so the modelers may accommodate it with other techniques.

Neither the common materials list or temperature profiles were established for the X-33 model,

and this has caused a certain amount of aggravation throughout its evolution. Such a list would also be

of great benefit to model correlation efforts at a later date. It may still be necessary to go back and

establish this list, but it would have been much easier to have established it from the start.
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3.4 Model Numbering

Assigning node number ranges to the different models is fairly common practice. You may want

to specify a target number of grids to help limit the size of the model, but be sure to allow adequate

room for inevitable growth. Enforce the numbering not only on nodes but also elements, properties, rigid

elements, and multipoint constraints (MPC's). Rigid elements and MPC's can cause difficulties. MSC/

NASTRAN and MSC/PATRAN sometimes treat them as elements and sometimes treat them as separate

entities. This can particularly be a problem if you later decide to use superelements. Older versions of

MSC/NASTRAN would allow an element and a rigid element to have the same number in a standard

analysis but not in a superelement analysis. To be safe, make sure their numbering is exclusive of the

elements. The material numbering should be from the common materials list but if a special material is

needed, enforce the numbering range. And finally, make the ranges different enough so that you can

easily identify the model that an element, node, or property belongs to.

3.5 Interface Control

If at all possible, an Interface Control Document (ICD) should be established for the different

model pieces. This is a document that defines the interface geometry and loads between different por-

tions of the model or structure. For the most part, these data are already contained in structural ICD's.

For the X-33, this was true for interfaces between companies such as B.E Goodrich and Lockheed-

Martin Skunkworks or Lockheed-Martin Michoud and Lockheed-Martin Skunkworks. Lockheed-Martin

Michoud's ICD (fig. 2) was particularly well done and was invaluable in interfacing the lox tank model

with other models. Much of the X-33 was designed within the same company and did not have a struc-

tural ICD. It would be very beneficial to establish such ICD's for the purpose of the models, even if they

are not rigidly controlled documents. They might also help define better divisions of responsibility for

the model pieces. An example for the X-33 would be the aeroshell ring frames over the LH 2 tanks. The

ring frames' modeling responsibility belonged to the aeroshell modeler and the tank modeling responsi-

bility to another. Since the ring frames attached continuously to the tanks, a great deal of coordination

was required to make the model meshes match. A better approach might have been to let the tank mod-

eler model the ring frames and define an ICD for the frame to aerosheil interface. This would still

require coordination, but the interface would be better defined and more along structural lines rather
than model meshes.

In instances where the interface between structures should only pass loads or allow compliance

in certain directions, the ICD should carefully indicate which side these releases are modeled. The

structural ICD should make this clear; however, many modelers that are only concerned with one side of

the interface will not make any provisions for special releases except through model constraints. These

constraints are then lost upon integration and it is left to the integrator to fix the problem, usually with

springs or rigid elements. This is not necessarily the most efficient method. This problem occurred

regularly on the X-33 project.
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Figure 2.Sample from Lockheed-Martin Michoud's ICD I.

3.6 Archive Format

The format for storing and transmitting the model data needs to be decided. For the X-33, this

was decided to be the MSC/NASTRAN bulk data. This decision was made for two primary reasons.

First, because the modeling effort spanned several companies that used various CAE packages, even

different versions of those packages, the bulk data was deemed the most portable. MSC/NASTRAN

was the most common denominator. Second, even though the CAE translators to MSC/NASTRAN are

continually improving, they are not perfect. Since these models would be passed back and forth many

times and passed through CAE translators multiple times, it was decided that the bulk data would be the

trusted copy. Any modifications that were made with the help of the CAE packages would be output to

MSC/NASTRAN but then text edited into the archive bulk data format. In fact, for X-33, most errors

between model versions were traced back to passes through the CAE packages where beam orientations,

section properties, and material definitions were compromised. Bulk data comments could also be

preserved with this cut-and-paste method.

For X-33, it was also decided that the separate models would remain in separate files and

assembled using "include" statements in the MSC/NASTRAN analysis file. This provided ease of

updates for portions of the model that were in various stages of flux and design. A submodel's included

bulk data file could easily be replaced with a new one as updates were made without affecting the rest



of the model. Also, had the common materials list been used, this would be a convenient way of using it.

This decision, as beneficial as it was, created one problem--MSC/NASTRAN does not allow duplicate

grid definitions. This prohibited having grid definitions in both bulk data files for models that interfaced.

However, the CAE packages cannot read in the bulk data for a submodel without this grid definition.

For exarnple, SDRC IDEAS would not read in any of the file if there was such an error, while MSC/
PATRAN would not read in affected elements but would read the rest of the file.

One suggestion for handling this problem was that each submodel have completely unique grid

numbers and then have an additional interface file that contained connecting springs or rigid elements.

This could be an effective method for a relatively simple model with few interfaces, but for this highly

coupled structure, the cost of additional grids and elements would be prohibitive. Also, it would be very

difficult to ensure absolutely coincident grid points that are required for this method to work correctly.

The solution decided on for the X-33 was that within a submodel bulk data file all grid defini-

tions that interfaced with other submodels would be placed in the bottom of the bulk data file where

they could be easily found (fig. 3). Further, the bulk data files would be considered in an upstream/

downstream fashion similar to superelements. The submodel bulk data files were named with a preced-

ing number to facilitate this upstream/downstream ordering. An interface grid was defined once in an

upstream bulk data file. When it was referenced in a downstream bulk data file, its definition would be

commented out with a unique integration comment such as "$INTEG $." Thus, when all bulk data files

were included in the MSC/NASTRAN analysis file, no duplicate grid definitions would result. If it was

necessary to read a bulk data file into a CAE package or have a checkout analysis done by itself, then all

occurrences of the "$INTEG $" comment would be changed to nothing in a text editor first.

4. USE OF MSC/PATRAN IN MODEL INTEGRATION

MSC/PATRAN was the CAE package used for the model integration. This was a difficult task

made relativly easy by several of MSC/PATRAN's features associated with creating and displaying

groups. Lockheed-Martin Michoud reported great difficulty completing similar tasks with SDRC

IDEAS. In particular, MSC/PATRAN offered a unique benefit to this integration process. With the

submodel bulk data files defined as they were, they could be read into MSC/PATRAN to form an inte-

grated model database, as long as the files were read in the proper order. This could be done without

having to edit out the "$INTEG $" comments. In addition, this process was vastly aided by the use of a

journal file. The journal file was constructed to create a group, set it as default, and then read the bulk

data and repeat for the next file. With this journal file it was extremely easy to reconstruct integrated

model databases for viewing results. It was also very easy to establish an X-33 template for use by other

engineers. For the other companies that used MSC/PATRAN, but had different versions on different

machines, this was a convenient way of providing them with a database.
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GRID 302064 85.2022 47.2612 39.7029

GRID 302066 90.3585 14.3892 58.1242

GRID 302075 92.0585 4.3265 59.1155

GRID 302076 92.0585-4.3265 59.1155

$ ...... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ...... 9

RBE3 302103 302076 123456 1.0 123456 9002200 9002201

RBE3

S

5INTEG

GRID

GRID

GRID

GRID

GRID

GRID

S

$INTEG

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

$

$INTEG

$INTEG

$INTEG

$1NTEG

$INTEG

$INTEG

$INTEG

$INTEG

5INTEG

5INTEG

51NTEG

51NTEG

51NTEG

$INTEG

5INTEG

51NTEG

5INTEG

;INTEG

;INTEG

$INTEG

$INTEG

$INTEG

$ INTEG

$INTEG

$ INTEG

$ INTEG

$INTEG

$ INTEG

$INTEG

$ INTEG

9002202 9002203

302102 302075 123456 1.0

9002208 9002209

55 AerOshell LOX Struts interface grids

302069 85.1352-56.9733 21.7940

302070 85.7286-50.3132 42.0806

302071 91.7596-11.7675 60.4921

302072 85.1352 56.9733 21.7940

302073 85.7286 50,3132 42.0806

302074 91.7596 II.7675 60.4921

55 LOX Upper Aeroshell interface grids

302008 83.4309 61.2794 19.5884

302009

302010

302011

302012

302013

302014

302016

302036

302037

302038

302039

302040

302041

302042

302044

302056

302059

302061

302D65

302067

55 WindWard Skin

SGRID 203004

83.6446 58.3988 28.0126

84.0784 54.3846 35.8769

85.1223 46.4254 46.1945

86.6031 36.3922 54.4952

88,4963 24.4473 60.6269

90,8134 10.5549 64.4753

83,4057 62.3655 14.8052

83.4309-61.2794 19.5884

83.6446-58.3988 28.0126

84.0784-54.3848 35.8769

85.1223-46.4254 46.1945

86.6031-36.3922 54.4952

88.4963-24.4473 60,6269

90.8134-10.5549 64.4753

83.4057-62.3685 14.8052

92.6334-9.37-6 65.6816

84.7397-50.1385 42,0461

90.0136-15,2833 63.487

84.7397 50.1385 42.0461

90.0136 15.2833 63.487

SGRID 203005

$$ WindWard LOXFRM interface grids

$CRID

SGRID

SGRID

SGRID

5GRID

5GRID

5GRID

$GRID

SGRID

5GRID

5GRID

SGRID

$GRID

SGRID

$CRID

SGRID

$

SS LOX

$GRID

$GRID

SGRID

SGRID

$GRID

SGRID

SGRID

SGRID

206011

206012

206013

206014

206015

206016

2o6017

206048

206070

206071

206072

206073

206074

206075

206076

206106

interface grids

84,9187 59.2187 12.6072

84.9187-59.2187-12.6072

92.5383 24.4025-54,8843

90.6088 34.4398-50.3431

88.8647 42,9594-43.4527

87.2211 50.5423-34.7178

85.9132 55,9198-24.4057

84.375 59.8319-.138199

84.1082 58.4137 14.6675

94,4133 14,294 -57,5103

92.5382-24,4025-54.8843

90.6082-34.4397-50.3431

88.8646-42.9592-43.4527

87.2218-50.5425-34.7178

85.9128-55,9197-24.4057

84.375 -59.8319-.138199

84.1082-58.4137 14.6675

94.4133-14.294 -57.5103

123456 9002206 9002207

Tank interface grids

9002200 0 91.1770-4.40900 58.6340

9002201 0 91,2170-3.94700 59.5200

9002202 0 92.9000-4.70600 58.7110

9002203 0 92.9400-4.24400 59.5970

9002206 0 91.1770 4.40900 58.6340

9002207 0 91.2170 3.94700 59.5200

9002208 0 92.9000 4.70600 58.7110

9002209 0 92.9400 4.24400 59.5970

INTEG SGRID

INTEG SGRID

INTEG $CRID

INTEG SGRID

INTEG SGRID

INTEG SGRID

9102224

9102225

9102226

9102227

9102250

9102251

87,8638 43.7069-18.566

89.2716 36.9369-24.681

90.9599 28.3519-29.6469

93.1857 16.438 -33.1889

92.2647-21.4419-32.091

92.2647 21.4419-32.091

Majority of model,
including grids that do not

interface with any other
models.

Interface grids to down-
stream bulk data files. This

is the first time they are
defined for the NASTRAN

analysis. They are part of this
submodel but grouped here
for convenience.

Interface grids to upstream
bulk data files. They are
commented out to avoid
conflict in the NASTRAN

analysis. They can easily
be uncommented for stand-

alone analysis or stand-
alone PATRAN database.

Figure 3. Sample of bottom portion of a submodel bulk data file.
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5. PITFALLS ENCOUNTERED WITH MSC/PATRAN

The largest MSC/PATRAN pitfall encountered lies in the association in the database of the beam

orientation vectors with the property rather than the element. The X-33 model has a large number of

beam elements with the same cross-sectional properties but different orientations. The orientations were

not easily defined by an MSC/PATRAN field, so a different property was required for each while defining

them in the database. These were later text edited in the bulk data file to reference the same property card.

On reading this bulk data file back into MSC/PATRAN, the property remained a single property entry

with a MSC/PATRAN spreadsheet field for the orientation. This was convenient when checking beam

properties. However, when it was desired to add a new beam based on the existing property, the output

beam orientation was undefined and had to be text edited later in the bulk data file.

Another pitfall was described in section 3.5, regarding translation between the CAE package and

the bulk data. Even MSC/PATRAN and MSC/NASTRAN had this problem, although it was worse with

other CAE packages. In fact, for the X-33, most errors between model versions were traced back to

passes through the CAE packages where beam orientations, section properties, and material definitions

were compromised.

One other pitfall occured regarding the translating of the bulk data into MSC/PATRAN. This

problem came with the switch from MSC/PATRAN 6.2 to MSC/PATRAN 7.0. The model contained a set

of MPC's that were defined on multiple MPC cards but had the same MPC number. MSC/NASTRAN

handles this very well. MSC/PATRAN reads each of the separate cards and then internally offsets the

MPC identification for each one. This particular offset is not user controllable. In version 6.2 this offset is

fixed at I, which caused no problem. In version 7.0 the fixed offset was changed to 10,000. This caused

the offset numbers to clash with other rigid element entities. Fortunately, the journal file could be reor-

dered somewhat to avoid this problem.

6. CONCLUSION

The task of integrating a structural finite element model that has been developed by several

modelers from several companies is challenging. This task has unquestionably benefited from all the tools

made available through the currently available CAE packages. There are, however, strategies that can be

brought to bear that can smooth the process greatly. Even with many of these strategies now being in-

cluded in the next generation of CAE packages, the model integrator's understanding of them is essential.

This is particulary true with the variety of sources of models being integrated. These strategies are best

used early in the project to lay a good foundation for integration. A strategy has been presented here that

consists of six decisions that need to be made: purpose of model, units, common materials list, model

numbering, interface control, and archive format. This strategy has been proved and expanded from

experience on the X-33 vehicle.

10
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